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R1~PEATED MEASU REIV~ NTS DESIGNS , 11
By

A . Hedayat and K. Afaarinejad

University of Illinois, Chicago
and

Florida State University

Abstract

Repeated measurements designs are concerned with scien-

tific experiments in which each experimental units is assigned

more than once to a treatment, either different or identical.

It is shown that a family of balanced repeated measurements

designs which are very popular among experimenters are uni-

versally optimal in a relatively large class of competing

designs.
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Key words and phrases. Repeated measurements designs, cross-
over designs, changeover designs, universal optima]. repeated
measurements designs. 
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T n ; I K A T E D  ME AS UHI MENTS DES J .UN ~ , 1.1

By

A . Hedayat  and K.  Af sa r ine j ad

4

1. I n t r o d u c tio n  and the Need for Repeated Measurem ents .

Experimenters in many field s of research pe r fo rm experiments

des igned in such a way that each experimental  unit ( subject)

is assigned more than onc e to a t reatment  ( t e s t ) ,  either

d i f f e rent or identical .  These designs are given several

names in the l i tera ture  of s tat ist ical  designs : repeated

measurements designs (br ie f ly  RN des igns) ,  crossover,  or

changeover d es igns, (multiple) time series designs , and

b e f o r e — a f t e r  designs . An extreme form of an RN design

:~ is the one in which the entire experiment is  planned on a

s ingle exper imental unit . Details on latter designs can

be found in Williams (1952), Finney and Outhwaite (1956),

and Kiefer (1960). A brief history of the subject with  a

bibliography containing 136 directly related references is

given in Hedayat and Afsarinejad (1975).

The use of RN designs rather than the classical de—

s igns , for which the number of experimental units is the

same as the number of observations, can be justified in

many settings such as when:

C i )  One of the objectives of the experiment is to determine

the effect of different sequences of treatments applications

as in d rug, nutrition, or learning experiments .

•1
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(ii) The experimenters might be interested in discovering

whether or not a trend can be traced among the responses

obtained by successive applications of several treatments

on a single experimental unit . For exatnple , if one wants

to measure the degree of adaptation to daricness over time,

the most efficient use of subjects requires that each sub-

ject be tested at all times of interest.

(iii) Experimental units are scarce and have to be used re-

peatedly . This Is often the case in small clinics or in

the development of large military systems , such as aerospace

vehicles, airplanes, radar, computers , etc .

(iv ) The nature of the experiment is such that it calls for

special training over a long period of time . Therefore, to

minimize cost and time , the experimenter should take advant-

age of the trained experimental units for  repeated measure-

ments.

To this point , RN designs have been used on the grounds

of balance and simplicity of computations . While such cri-

teria may still be attractive in some cases, they cannot be

justified on statistical grounds. This paper shows that some

families of RM designs which are very popular among experi-

menters are “universally optimal t’ in a relatively large class

of competing designs (Section 3.1). Existence and nonexistence

of such designs are discussed in Section 3.2.

~ 
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2. Prelirni !iarles and Universal Optimality .

The search for an optimum design involves the determination ,

in a specified class of competing designs , of the designs

which is best according to some well-defined criteral under

a given model for observations . In this paper we are con-

cerned exclusively with the following set-up : t treatments

~re to be tested and studied via n experimental units.

Each experimental unit is used in p periods resulting in

r1 > 1 observations for the i—th treatment , r1 + r2 +...+rt =

Clearly there are ~~~~~~~~~~~ ways of performing the ex-

periment . Let D denote the set of all such arrangements,

to which we shall refer as designs . If d is a design in

8~ D, then let d(i,j) denote the treatment assigned by d in

the i-th period to the j-th experimental unit . Throughout

this paper the following model is assumed for the response

obtained under d(i,j):

(2.1) 
~~~ 

= u 
~ 

ai + + 
~d(i,j) 

+ 
~d(i-l,j) 

+ ejj

i l,2,....,p; j 1,2,..

~d(O,j) 0 for all j,

where the unknown constants ii, cxi, ~~ 1
~d(i j) and

are respectively called the overall mean , the effect of the

i-th period , the effect of the j-th experimental unit, the

direct effect of treatment d(i,j) and the first order

residual effect (or carryover effect) of treatment d(i—1,j).

-1 
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We assume that ejj’S are hornoscedastic which means zero.

We are Interested in specifying a design d in D which

is connected with respect to all contrasts in immediate and

residual effects and is “universally optimal” in a speficied

class of competing designs .

2.1. Universal Optimalj.~~~ In vector notation the np

responses under Model (2 .1) can be written as

= Xld8l + X2d82

where 81 consists of paramters of interest for study . In

our case, 
~1 

consists of direct treatment effects or residual

effects or both. Let

:
1 cd

(n
l) = 4dX1d - X dX2d (x~d

x2d ) 
- X2dXld

and

XidYd 
- X dX2d (x~d

x2d) 
- 

X
~
Yd

then cd(~ l
) is the information matrix associated with

since it is well known that a linear parametric function

= L 8 1 is estimable under d if .L is in the row space

of C
~
, and the best linear unbiased estimator of ~ is

given by

= L (C~Y ~d 
with Var(1~) = L(C dY L

In this case we say d is connected for ~~~. Now suppose d

is connected for a set of t—l independent orthonormal

contrasts A 8 1. Then by the above argument the covariance

of the best linear unbiased estimator of A~~1 Is given by

Vda
2 

= A CaA~
2 

= (A’CdAY ~
2

*

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ ~~~~~ 
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This leads to consideration of an optimality functional ~V

on (t-l) x (t-i) matrices and to determination of a design

d which minimizes ¶ ( V d ) .  Some commonly used optimality

criteria are :

D-optimality : !(V d ) = Det Vd;

A-optimali ty : ‘f( Vd ) = Tr Va;

E-optimali ty:  ~ (V d ) = maximu m elgenvalue of Vd .

The relationship between these opt±mal.ity criteria is well-

known and may be found in Kiefer (1958, 1959, 1975). In

some settings it is possible to introduce an optimality

criterion which include D-, A— and E-optimality as special

cases . One such setting together with a sufficient condi—

tion under which a design is optimal is given by Kiefer

(1975) and will be utilized throughout this paper .

A major difficulty is the computation of (A ’CaA)~~ 
for

each competing design d. Since in our case, as will be

seen later, each row (hence each column) U!’ Cd adds up to

zero , we can u t i l ize  the recent result of Kie fe r  (1975 ) on

universal optimality and avoid the computation of (A ’CaAY~
’

for each d. We shall now briefly review the concept of

universal optimality . Suppose that Rt consists of t x t

non—negative definite matrices. Let consist of those

elements of Rt, all of whose row and column sums are zero.

Let 0 be the set of all functions W from to

( _co , +~ ) with  properties :

•1

~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~
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( i )  w ( . )  is convex ,

(2.2) (Ii) w ( b R ) is non—increasing in the scalar

b > O , R E
~~~t .

(iii) w(.) is invariant under permutation of

rows or columns of R €

In our setting C
~ ~

- A very useful concept of optimality in this setting

is:

*Defini t ion 2.1. A design d is universally optimal in the

class of competing designs under consideration if’

w(Cd*) � 
:~~

d ) for each U) € 0 .

If d is universally optimal, then it is D-, A-, and

E—optimal . In some situations it is possible to identify

the universal optimal design without actually computing

w (Cd) for each d. One such situation has been identified

by Kiefer (1975), and is formally stated here . First we

need the following definition.

Definition 2 .2 . A design d is said to he completely

symmetric with respect to 81 if its corresponding Cd
is of’ the form alt + bJt, where a and b are scalars,

is the Identity matrix of order t and ‘~ 
is the

matrix of order t whose entries are all one ’s.

Theorem 2.1. If the class of competing designs contains a

*design d such that

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
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*(1) d Is completely symmetric ,

( i i )  TrC d * � TrC d, for  all d €

then d is universally optimal.

In the following sections we have characterized univer-

sally optimal designs in some classes of competing designs

which we know are connected for the parameters under considera-

tion.

3. Universal ~pt irnal Repeated Measurements Designs .

In this section we shall search for a universally optimal

design (if it exists) in a class of uniform RM designs.

The existence and nonexistence of such optimal designs are

studied in the final part of this section . First we need

some notation and definitions . An arbitrary RM design

based on np observations resulting from the application

of t treatments to n experimental units during p periods

is denoted by RN(t,n,p). The set of all such arbitrary RN

designs is designated by Q.m(t,n,p). Our study here is limited

to the case where p = t and n = Xt , ).. a positive integer.

5 

Definiticin 3.1. A design d in R~ (t,n,p) is said to be

uniform on the experimental units if d(i,j) 4 d(i ,j), i + i

for all ~~~.

Defini t ion_3. 2 . A design d in RTT’(t,n,p) is said to be

uniform on the periods if in each period d assigns the

same number of experimental units to each treatment.

L*~. ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~rl:
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Definjt ton 3 .5 .  A design d in ~Trt(t,n,p) is said to be

uniform if its is uniform on both the experimental units

and per iods .

The subset of all uniform designs in ~ ‘(t,n = xt ,t) is

denoted by ~tc~.~ (t,Xt ,t).

3.1. ~~~~çyi_f~r a  Universal Optimal Design in u~ n(t,Xt ,t).

Our intere~t here mainly lies in unbiased estimation of

linear parametric functions of direct treatment effects and

residual effects under Model 2.1. So, under the notation of

Section 2.1, the parametric vector consists of either

all direct effects or all first order residual effects. The

information matrix associated with the entire set of para—

meters of Model 2.1, rewritten as

Yi j  = 

~~~~~~~ ~ ~d( I-l ,fl + aj  + + u + e1~
for an arbitrary d in ~c~t~(t, n = x 1t ,t )  is given by

nI )LJ
1 ‘

~~ ?

— 2  

~~5 ( t - i )I  

_

E
d

_ 

Nd 
_

~~~~~~~~~~
1

~~~~~t
_ 

— 2
(3.1) (X

~~~
X

d
)

~~~ 
= :1:

n1~ X (t-1)1~ n1~ ti ’ nt 

S _ - S . - -—- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . 5—- --

(
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where

I is the identity matrix of order t,

Md is the incidence matrix of direct effects and first

order residual effects under d,

is a square matrix of order t with all entries ones,

is a t x n matrix with all entries ones,

is an r x 1 vector of ones,

Ed is the incidence matrix of first order residual effects

and period effects under d,

Nd is the incidence matrix of first order resdiual effects

and experimental unit effects under d .

Lemma 3.1. The information matrix of the joint direct treat-

ment effects and first order resdiual effects is given by

- - 
X(t-l)~

(3.2) Cd(T ,Q)c 2 
=

~ 
~-2

L Md - X ( t t l )[I -

Proof. If we write XdXd as partioned in (3.1) in the

following way

I ,  S
ZldZld ZldZ2d

X d
X

d ‘

L
~~~~~~~

1d Z2dZ2d

5-- . 55

.
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then

(3.3) C~ (T ,p) = Z idZ ld 
— Z id Z 2d (

~~~~~~d
Z 2d Y Z 2d Z ]~d .

where

nI 
~2 

nlt ~I + i~E~i ~~ J 2 0

2dZ2d) = tI tin = ~I 0

~
lt tin nt 

— - 

0 0 O
_
~After some algebra (3.3) reduces to (3.2).

Theorem 3.1. A design d* in h2!T~(t,Xt,t) is universally

• optimal for the estimation of direct treatment effects if

Md* =

Proof. Utilizing the joint information matrix of the vector

of direct treatment effects and residual effects as given in

(3.2), one can derive the information matrix of the vector of

direct effects as

(3.-k) Cd (T )  = nI — MdMd + X(2_t) T
X (t —t— 1) t —t-l

It can be argued that for any d in h9~ (t,Xt ,t)

MdJ1 = J1Md =

and therefore

Cd(•I•)lt = 0

meaning that the sum of the entries In each row and column of

cd (
~r ) is zero. Therefore, by Theorem 2.1, a design d* in 

— -.- - S-
~~~~~~~~

- -
~~
--S. S-. --.-.-.-.--- —_-- - ——-5- .. -
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Tn (t ,Xt , t )  i s  universally optimal if cd (T) is completely

symmetric and TrCd*(T) ~ 
TrC~ (.r) for any other d in the

class. Clearly cd (1) is completely symmetric if d* is

such that Md* = x(J1-I). From the expression for Cd (.r) it

is obvious that TrCd(T) is maximum if and only if TrMdMd
is minimum . But since the sum of each row of Md is x(t—i),

• TrMdMd Is minimum if and only if Md = ~~J1-i).

Theorem 3.2. A design d* in ttS~~(t,Xt ,t) is universally

optimal for the estimation of first order residual effects

if Md* =

Since the information matrix of the r f i r s t  order resi-

dual ef fects , Cd ( p ) ,  f r om (3. 2 ) ,  is

(3.5)- c~(~) = x (t t l )1 - 
~~~~~ + 

x ( 2 - t ) ~

the proof is analogous to the proof of Theorem 3.1.

The problem of the existence and nonexistence of’ a uni-

versally optimal design in ~iRfl~(t,Xt,t) will now be studied .

3. 2. Exi nce and Nonexistence of a Universal  Optima l De-
sign in ~i~~(t,~t,t).

First we shall give a combinatorial interpretation of

the structure of a design in t~6~m(t ,Xt ,t) whose incidence

matrix of direct treatment effects and first order resdiual

effects, Md, is of the form X(J1—I). Then we shall investi—

gate the existence and nonexistence of such designs. First

we need the following definition.

,1

S
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Definition k.l_A A design d in ~~~~t,Xt ,t) is said to be

balanced with respect to the set of direct treatment effects

and first order residual effects if in the order of applica—

tion each treatment is preceded X times by each other treat-

ment , i.e ., the collection of ordered pairs ( d( i , j , ) ,  d ( i — l , j ) ) ,

1 
~ 

i 
~ 

t—1; 1 
~ 
j � Xt contains each ordered pair of distinct

treatments precisely ),. times.

If d satisfies the above requirement we shall simply

say that d is balanced .

Example k.i. Let t = 3 and ),. = k .  Then the following

design is balanced .

Experimental Units

1 2 3 k 5 6 7 8 9 1 0 11 12

1 1 2 3 2 3 1 1 2 3 2 3 1

Periods 2 3 1 2 3 1 2 3 1 2 3 1 2

3 2 3 1 1 2 3 2 3 1 1 2 ~

Lemma k .1. Md is of the form X ( J 1-I) if and only if d is

balanced, i.e., d is universally optimal if it is balanced .

The proof follows directly from the definition of first

order residuals effect in Model 2.1 and the fact that under

the stated condition the diagonal entries of Md are zeros

and off diagonal entries are X.

,1

~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~
‘ 
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If d1 is a balanced RM(t ,X~y , t )  design , i = 1,2, then

by patching d 1 and d2 side by side we shall obtain a

balanced RM (t,~ t,t) design with X = + 
~2’ 

Therefore

to construct a balanced RM(t,)~t,t) design it is sufficient

to study the existence of a balanced RM (t,t,t) design.

But it should be clear that if a balanced RN (t ,t ,t)  design

d~.oes not exist then we cannot conc lude the nonexistence of

balanced RM (t,Xt,t) designs with X > 1, as we shall see

shortly.

Several authors have studied the existence and nonexist-

ence of balanced RM (t,t,t) designs either directly in the

context of experime ntal design or in algebraic systems equi—

valent to such designs . For an extens ive bibliography on

the subject the reader is referred to Hedayat and Afsarinejad

(1975). Here we shall up-date the information on balanced de-

signs given in Hedayat and Afsarinejad (1975).

Family One. t = 2m , X = 1

It is known that balanced RN(t,t,t) designs exist

for all values of m. For example, if we number the experi—

mental units and periods by 0,l,...2m-l, then d is balanced

if’ d assigns treatment d(i,j) in the i—th period to the

j-th experimental unit in the following way :

d ( i , j )  = (.
~~) + j mod 2m if i is even

= (2m- ~j-i) + i mod 2m if I is odd .

—.———
~ I ~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~
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Family Two. t = 2m + 1, ) .. = 1.

It is known that no balanced RM (t,t,t) design

exists if t = 3,5, or 7. According to E. Sonnemann1 the

following design for t = 9 was found via an electronic

computer by K . B. Mertz.

Experimental Units

~~l 2 3 11. 5 6~~~~ 8 9
1 1  2 3 11. 5 6 7 8 9

2 9 7 8 6 k  5 1 2 3
3 7  8 9  2 3 1 k 5 6

k 6  k 5 3 1 2 9 7 8

Periods 5 k  5 6 9  7 8 2  3 1

6 8 9 7 1 2 3 6 k  5

7 5 6 k  8 9 7 3 1 2

8 3 1 2 7 8 9 5 6 k

9 2  3 1 5 6 k 8 9 7

E.  Soni ie~;~~nhi has found the fol1owIui~ (i~~1gn for t = 15

by mimicking the pattern of the design discovered by Mertz.

1. Personal communication to A . H.

71

S
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Experimental Units

1 2  3 k  5 6 7 8 9 1 0 1 1 1 2 13 111. 15
1 1 6 11 2 3 4 5 7 8 9 10 12 13 14 15
2 3 1 2  6 4  5 1 2 1 3 14 15 11 7 8 9 10

- - 3 7 14 1 8 9 10 6 15 11 12 13 2 3 4 5
k 15 1 7 11 12 13 14 2 3 4 5 8 9 10 6

5 8 11 3 9 10 6 7 12 13 14 15 4 5 1 2
6 9  2 12 1 0 6 7  8 3 4  5 1 13 14 15 11

7 11 5 8 12 13 14 15 1 2 3 4 9 10 6 7

Periods 8 12 8 5 13 14 15 11 9 10 6 7 1 2 3 4
9 5 1 0  13 1 2 3 4  6 7  8 9 14 15 11 12

10 4 15 10 5 1 2 3 11 12 13 14 6 7 8 9
11 6 13 4 7 8 9 10 14 15 11 12 S 1 2 3

12 10 3 15 6 7 8 9 4  5 1 2 11 12 13 14
13 14 4 9 15 11 12 13 5 1 2 3 10 6 7 8
1k 13 9 2 14 15 11 12 10 6 7 8 3 4 5 1

1 5 2  7 14 3 4  5 1 8 9 1 0  6 15 11 12 13

An examp1’~’ of balanced RM (2l ,21,2 1) is given in Hedayat

and Afsarinejad (1975). An example of balanced RM(27,27,27)

is given below . The group theoretic equivalent structure of

the fo1lowin~ design was first discovered by Keedwell (197k).

In an nbntract , Wang (1973), has claimed the existence

of a certain pattern in nonabelian groups of orders 39, 55

and 57 which when translated to our set up implies the exist— 
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tence of balaii~ed RM(t,t,t) designs with t = 39, 55 and 57.

But we have not seen this announced results . No other pub—

lished or announced results are known to us .

The story o1 balanced RM(t,t,t) design with t odd

is somewhat di.scouraging but, as we shall see shortly, such

designs exist for all t if X = 2.

Family Three. t = 2m + 1, X = 2 .

In this case n = ~t = 2(2xmfl) experimental units.

Partition the experimental unite into two groups each of size

2m + 1. Number the periods and experimental units in each

• group by O,1,...,2m. Then d is balanced if d assigns

treatment d(i,j) in the i—th period to the j—th experi—

mental unit in the following way :

In the f i rs t  group :

d(i,j) = (.~) + j mod 2m+l if ± is even,

= (2rn-i- 1 — 1~
1) + j  mod EnH-i if I is odd. I.

In the second group:

d(i,j) = (rn — .
~) + j mod 2m+1 if i is even,

= (~~~±2 — rn— i)  + j mod 2n~i-1 if I is odd.
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